【连续性】的意思和解释
【连续性】是什么意思(来源:辞书)
- 「连续性」一词的原来的意义是某一物理量在空间中沿任一座标轴方向只会连续变化(或维持不变),而不至于发生数值不连续之现象。在连续的单一流体中(例如围绕地球的大气中),大气压力沿任一水平轴维持不变,沿垂直轴则连续变化,此事实可称为大气压力之连续性。
再者,图中所示者为有I、II等两种不相混合的流体,在高度(hI+hII)的槽中,因有压力梯度存在而向右流动的情形。流体I之黏性系数为μI,密度为ρI,至于流体II之黏性系数、密度则分别为μII,ρII。如图中所示将x轴设于两种流体之界面处时,在界面处之y座标为零。在这种条件下,流体I中y=0处之应力(包括法向应力与剪应力),与流体IT中y=0处之应力相等。此事实即为应力之连续性。又流体I中y=0处之速度与流体II中y=0处之速度相等。(请参见图内之速度分布图)。此事实即为速度之连续性。最后值得一提的是,当把质量守恒之原理应用于流体的流场时所得到的数学或称为连续性方程,而其微分形式为▽·ρV+(?ρ/?t)=0(请参见equation of continuity)此式也可写成:
上式中u、v、w等分别代表速度V在x、y、z轴方向的分量,而此式乃根据质量守恒之原理,藉 (密度与速度向量之乘积)之连续性所导出者,因此流体力学中通常将「连续性」一词视为「质量守恒」(conservation of mass)一词之同义字。
--作者:谢尔昌
- 连续性在哲学思想中倾向于视连续为一个最重要的观念,认为真实的连续含有不尽其数的单位。德国哲学家黑格尔(G.W.F. Hegel, 1770~1831)在所着〔逻辑学〕(Wissenschaft der Logik)以连续和非连续为一对范畴,非连续性也译为「分立性」、「分离性」、「分割性」。黑格尔认为连续性和非连续性是「量」的两个基本属性。
连续性是指「量」的整体;非连续性是指「量」自身所包含的单位。连续性和非连续性是统一的,密不可分的,两者相互依存、相互包含。没有只是连续的「量」,连续的「量」也是非连续的。连续性以非连续性为条件,包含着非连续性。因为连续性意味着分割的可能性,分割就是非连续性,因此连续性是无数非连续性的一种连续。也没有只是非连续的「量」,非连续的「量」也是连续的。非连续性也以连续性为条件,包含着连续性。因为非连续性意味着不可分割的可能性,不可分割就是连续性。因此,非连续性是连续性的一种非连续。
在分析「量」的范畴之过程中,黑格尔分析了「量」的连续性和非连续性的辩证法。在他看来,康德(Immanuel Kant, 1724~1804)提出的第二个二律背反(antinomy)(实体是复合的还是单纯的)依据的就是「量」概念本身所包含的连续和分立这两个环节的对立。肯定实体是单纯而不可分的,是从假定「量」是分立的(非连续的)这个前提出发;反之,肯定实体是复合的、无限可分的,则是从假定「量」是连续的前提出发。这个二律背反之所以不可解决,关键乃在把「量」的两个环节看作是绝对对立的。黑格尔认为「量」就是连续与分立这两个环节的统一的思想,因为连续性即包含了分割、分立的可能性;而分立的大小也是「量」,是相等的分立,所以分立本身也是连续的,具有连续性。黑格尔曾说:既然两个对立面每一个都在自身那里包含着另一个,没有这一个也就不可能设想另一个,那么,其结果就是:这些规定,单纯看来都没有真理,唯有它们的统一才有真理。这是对它们的真正的、辩证的看法,也是它们真正的结果。
美国实用主义者皮尔斯(C.S. Peirce, 1839~1914)在其一八九二年所着〔实用主义〕中也谈到连续,为避免连续的无法说明的困难,用通论(generality)代替,但仍然不足说明连续性之最高和绝对形上的性质。
--作者:刘贵杰
词海的部份资料来自网络或由网友提供,不保留版权,如有侵权,请与我们联系以从站上删除! 免责声明:本站非营利性站点,以方便网友为主,仅供学习。
Tip:SCCG